
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/332040.332481
.

.

ARTICLE

Alice: lessons learned from building a 3D system for novices

MATTHEW JOHN CONWAY, University of Virginia, Charloesville, VA, United States
.

STEVE AUDIA, University of Virginia, Charloesville, VA, United States
.

TOMMY BURNETTE, University of Virginia, Charloesville, VA, United States
.

DENNIS COSGROVE, Carnegie Mellon University, Pisburgh, PA, United States
.

KEVIN D CHRISTIANSEN, Carnegie Mellon University, Pisburgh, PA, United States
.

.

.

Open Access Support provided by:
.

Carnegie Mellon University
.

University of Virginia
.

PDF Download
332040.332481.pdf
09 January 2026
Total Citations: 138
Total Downloads: 2165
.

.

Published: 01 April 2000
.

.

Citation in BibTeX format
.

.

CHI00: Human Factors in Computing
Systems
April 1 - 6, 2000
The Hague, The Netherlands
.

.

Conference Sponsors:
SIGCHI

CHI '00: Proceedings of the SIGCHI conference on Human Factors in Computing Systems (April 2000)
hps://doi.org/10.1145/332040.332481

ISBN: 1581132166

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/332040.332481
https://dl.acm.org/doi/10.1145/332040.332481
https://dl.acm.org/doi/10.1145/contrib-81100102259
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-81100524818
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-81100061772
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-81100055327
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81100396514
https://dl.acm.org/doi/10.1145/institution-60027950
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F332040.332481&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/chi
https://dl.acm.org/conference/chi
https://dl.acm.org/sig/sigchi
http://crossmark.crossref.org/dialog/?doi=10.1145%2F332040.332481&domain=pdf&date_stamp=2000-04-01

Papers CHI 2000 • 1 -6 APRIL 2000

Alice:
Lessons Learned from Building

a 3D System For Novices

Matthew Conway l, Steve Audia 2, Tommy Bumette 2, Dennis Cosgrove 3, Kevin Christiansen 3, Rob Deline 3,
Jim Durbin 2, Rich Gossweiler 2, Shuichi Koga 2, Chris Long#, Beth Mallory 2, Steve Miale 2, Kristen Monkaitis 2, James Patten 2,

Jeff Pierce 3, Joe Shochet 2, David Staack 2, Brian Steams 3, Richard Stoakley 2, Chris Sturgill 3 , John Viega 2, Jeff White 2, George Williams 2,
Randy Pausch 3

(1) Work done at the University of Virginia
mconway @ microsoft.corn

(2) University of Virginia O) Carnegie Mellon University
http://www.alice.org

ABSTRACT

We present lessons learned from developing Alice, a 3D
graphics programming environment designed for
undergraduates with no 3D graphics or programming
experience. Alice is a Windows 95/NT tool for describing the
time-based and interactive behavior of 3D objects, not a
CAD tool for creating object geometry. Our observations and
conclusions come from formal and informal observations of
hundreds of users. Primary results include the use of LOGO-
style egocentric coordinate systems, the use of arbitrary
objects as lightweight coordinate systems, the launching of
implicit threads of execution, extensive function overloading
for a small set of commands, the careful choice of command
names, and the ubiquitous use of animation and undo.

Keywords
Interactive 3D graphics, animation authoring tools

INTRODUCTION

Realtime 3D graphics is becoming mainstream: most PCs
shipped in 1999 will ship with some sort of 3D graphics
accelerator. We see this as an opportunity to approach 3D
graphics research not as a question of rendering speed, but as
one of authoring and pedagogy. Our goal is to engineer
authoring systems for interactive 3D graphics that will allow
a broader audience of end-users to create 3D interactive
content without specialized 3D graphics training. Implicit in
this line of research are a few assumptions:

The New Audience Assumption: we believe that a larger
and more diverse audience will be interested in creating
interactive 3D content. It is critical to realize that this new
audience will not necessarily have the mathematical or
programming background that current graphics programmers
have; this shapes the nature of the tools that we must provide
to this audience.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI '2000 The Hague, Amsterdam
Copyright ACM 2000 1-58113-216-6/00/04...$5.00

486 ~k,~llJ]i

Figure I Observing Real Subjects. Two subjects learn the Alice
3D authoring environment while an observer silently sits behind them
and takes notes. The major findings of this paper were derived from
observations of 100 subiects taken over several months.

The Programming Assumption: Interesting interactive 3D
graphics authoring will still involve some level of logic
specification/programming, at least in the near term. This is
true in part because of conditional behavior, which implies
the need for some sort of "if-then" construct. We have
focused on scripting in this work; future systems will
probably use a combination of techniques including
keyframing, programming-by-demonstration, and visual
programming, as well as scripting.

We began the Alice research project with the goal of creating
new authoring tools that would make 3D graphics accessible
to this wider audience, something that current 3D tools would
not do. Our basic design principles are:

• Choose a target audience and keep their needs in mind,
in our case, non-science/engineering undergraduates.

• Avoid math and cryptic notation in the API (e.g.
vectors, matrices) wherever possible and introduce new
terminology only when needed.

• Iteratively test our designs with real users, improving
both learnability and usability of the system in the
process.

C21=~ 1~ 2 0 0 0 CHI Letters volume 2 • issue 1

CHI 2 0 0 0 • 1 -6 APRIL 2 0 0 0 P a p e r s

We state our findings as empirical research results, not as
opinions; they are supported by formal observations of 100
users and hundreds of informal observation sessions over a
four year period.

THE ALICE WORKFLOW

Authoring in Alice consists of two phases: creating an
opening scene and scripting. This same two-phase workflow
is seen in some commercial tools, including Raydream Studio
and WorldUp.

Creating an Opening Scene
Users select objects from an object gallery displayed by
clicking the add object button (figure 2, A). Alice's library
contains hundreds of low-polygon models whose high fidelity
comes from carefully hand-painted texture maps [15]. Note
that while Alice users can import objects in several popular
file formats, Alice itself is not a CAD tool for creating object
geometry: Alice is a tool for describing the time-based and
interactive behavior of 3D objects.

Objects are placed in a PHIGS-Iike tree of nested objects
[2][23] (figure 2, B), displayed along the left edge of the
authoring window. Navigation tools (figure 2, C) provide a
simple walking metaphor for moving the camera. Alice can
support multiple, simultaneous windows/cameras.

Context Menus
Holding down the right hand mouse button over an object

Figure 2: The Alice Authoring Environment (opening scene tab).
(A) The Add Object button presents a gallery of 3D objects. (B) The
Object Tree, a PHIGS-like tree of hierarchical objects (C) Camera
controls allow the user to drive around the scene. (D) The Undo
button provides infinite animated undo. (E) The Alice Command Box
for evaluating single lines of Alice script. (F) The Script tab reveals a
simple text editor where the user writes scripts that control the
objects in the scene.

displays a context menu of common operations, including

• Point the camera at the object
(Point Camera A 0

• Move the camera to a position that is above and off to
one side of the object
(Get a Good Look AO

• Spin the object in place for simple examination
(Turn Around Once)

• Show a list of methods that this object responds to
(Show Me What You Can Do)

The A/ice Command Box
Alice programmers are encouraged to explore the command
set via the Alice Command Box (figure 2, E) which is used
for trying individual lines of script code. I f we wanted to
move an object, a bunny for example, a precise distance (as
opposed to using the mouse), we could type:

bunny,move (up, 1)

and press the GO button (or hit the Enter key) to make the
bunny move up by one meter over a period of one second.

Commands are A/ways Animated
All commands in Alice animate over a period of one second
with an Ease-In/Ease-Out interpolation [8] whenever it is
semantically reasonable to do so. Programmers can still
specify an explicit duration (including zero duration) if so
desired. This is not just a flashy trick but is a critically
important design decision. Not only does animation support
the percept of object constancy [17], but it can also aid in the
debugging process by providing information about how a bug
unfolded.

In a system without animation, a user can easily make the
mistake of using the Move command with a distance that
takes the object off the screen. An instantaneous move
effectively "teleports" the object out of sight, a mistake that is
visibly indistinguishable from a delete command. By
animating the move command, we give the user a chance to
see the command unfold over time. In this case, the user
would see the failure in progress as the object slides off the
edge of the screen.

Likewise, Alice provides an animated infinite undo
mechanism (figure 2, D). This mechanism always takes one
second to undo an operation, regardless of the duration of the
original command being undone.

Controlled Exposure of Power
Alice commands are highly overloaded, supporting several
different calling patterns through a single command name.
For example, Move can be called in all these ways:

obj.move(forward, 1)
obj.move(forward, 1, duration=3)
obj.move(forward, 1, speed=4)
obj.move(forward, speed=2)

T H ~ ,,'~"t,:a'T/,J,'q'~=" I S H~h't~.:7
4 8 7

Papers CHI 2000 • 1 -6 APRIL 2000

change of coordinate system
oH.move(forward, 1, AsSeenBy=camera)
different interpolation function
obj.move(forward, 1, style=abruptly)

Using overloaded methods with optional keyword parameters
allows us to provide a controlled exposure of power to the
Alice user. This characteristic of the API allows novice users
to become expert users by incrementally adding to what they
know, rather than forcing them to learn entirely new
commands or API constructs. As one Alice user said, "you
can get as complicated as you want, but not more than you
need to."

Scripting
Once the objects are placed and the camera is in position, this
initial state is saved into a worldfile. This file also contains
the name of each object so that it can be referenced in the
script that will control the object 's movements.

When the opening scene is ready, the user then presses the
scripting tab (figure 2, F), which reveals a text editor and a
Run Script button. The user iteratively edits the script and
runs it, with the script always starting its execution from the
saved opening scene.

THE IMPLEMENTATION

For several years, we followed a "time machine" approach to
Alice, doing early implementation on high-end SGIs in
anticipation of low cost commodity graphics. Alice now
exists solely on the PC platform, running on MS Windows
95, 98, and NT with the overall structure shown in figure 4.
The layers are described below.

Rendering
The rendering software is Microsoft 's Direct 3D Retained
Mode (D3DRM). This layer manages the 3D database of
objects, their attributes, and their texture maps; illuminates
the scene; and maintains the hierarchical tree of coordinate
systems.

.................. ' ~ ~ : 4 g ~ , ~ " ~ i " i ~ : ~

Figure 4: The Alice Software Architecture. User scripts are written
in Python as is much of the Animation Engine Layer beneath it. The
layers below this are written in C. Alice includes a separate Control
Panels facility for creating Visual Basic GUI components directly
through the Python scripting language.

Python
Alice uses a general purpose, interpreted language called
Python [24]. We chose this language for its technical
characteristics. Python is:

• a modem language with a rich set of built in data types
(maps, strings, lists) and operators for those types.

• freely distributable and available without royalty.

• extensible in C/C++. For example, Alice uses the
Coriolis collision detection library.

Although we resisted changing the Python implementation,
our user testing data forced us to make two changes. First,
we modified Python's integer division, so users could type
1/2 and have it evaluate to 0.5, rather than zero. Second, we
made Python case insensitive. Over 85% of our users made
case errors and many continued to do so even after learning
that case was significant. Most novice-oriented systems (e.g.
Hypercard, Pascal, LOGO) are designed to be case
insensitive, a lesson we saw being ignored in the proposed
standard for VRMLS cript [10].

The Animation Engine
The Alice animation engine interpolates data values from a
starting-state to a target-state over time, with a default
duration of one second. When two or more animations run in
parallel, the Alice scheduler interleaves the interpolations in
round-robin fashion. This allows a user to evaluate a
command while another command continues to animate,
without any explicit thread management. The use of these
implicit threads is a major contribution of the Alice system.

Alice itself is a single-threaded application. We built an
experimental Alice prototype using native Windows 95
system threads, one per animation, but it exhibited poor load
balancing between threads, giving rise to poor-quality,
lurching animations.

Animated Alice commands return an animation object:

scoot = bob.move(forward, 1)

These objects respond to several methods (stop, start, loop,
stoplooping) and can be composed with other animation
objects:

DolnOrder(animl, anim2,..animN), which causes the animations
to run in sequence.

DoTogether(animl, anim2,...animN), which causes them to run
in parallel.

4 8 8 ~ /k . .~ l~
t~I=4Z ~ O t D O

CHI 2000 • 1 -6 APRIL 2000 Papers
Of course, DolnOrder and DoToge~er
animations can also be composed, giving
rise to more interesting animations. For
example, given a world with an object
called Bumay, we could make the bunny
beat his drum by writing:

ArmsOut = DoTogether(
Bunny.Body.LeRArm.Turn(Left~ 118),
Bunny.Body.RightArm.Turn(Right, 1 /8))

ArmsIn = DoTogether(
Bunny.Body.LeffArm.Tum(Right, 1/8),
Bunny.Body.RightArm.Turn(Left, 1 /8))

BangTheDrumSIowly -- DoZnOrder(
Arm$Out~
Armsln,
Bunny.PlaySound('bang'))

BangTheDrumSIowly.LoopO

TESTING AND REAL USAGE

The table below summarizes the subjects in our tutorial
observation sessions.

100

High: 41
Low: 18
Mean: 22
Std Deviation: 7.4

Female 58%
Male 42%

90% self-described as using
email, some www. some word
processor, no programming.

Subjects were tested using a two-person talk-aloud protocol
[12]. During a 30 minute session, pairs of users worked
through the Alice tutorial. The tutorial walked the users
through the steps necessary for creating a simple Alice world.
Users would load in an object, practice moving it with the
mouse and with Alice commands. They then learned about
how to manipulate the parts of objects and other object
attributes. Finally they learned how to name animations and
build simple composite animations.

We used pairs because pairs of people naturally talk to each
other about what is happening, what is confusing, and what
they expect at each step. As they talked, we took notes.

Only under the most dire circumstances (e.g. system crash)
did we assist users, a rule that sometimes requires a great deal
of discipline, especially if the observer is also one of the
system developers. While there was often strong temptation
to show the subjects the "right way" out of a problem, we
were strict about letting users find their own way, only
interceding if the error was so great that it jeopardized the
subjects' ability to finish the session.

Often these sessions were sobering. Encouraging everyone on
the development staff to observe real users is an excellent

way of sensitizing an entire team to the needs of one's target
audience.

Other Sources of Observation Data
In addition to the formal usability sessions, we gathered
observations from several other sources:

• suggestions from about 20 graduate students in a
graduate-level graphics class.

• longer term observations of three in-house users using a
critical-incident debriefing technique [4].

• deploying Alice at a magnet school in the Lynchburg,
Virginia public school system and gathering on-site
data from their students.

• exchanging detailed email with many members of our
Alice user community, including some very valuable
exchanges with home schooled grade-school children.

In short, these findings are neither opinions or the results of a
marketing-style (did you like it?) questionnaire. The data
comes from the observed behavior of real members of our
target audience during use of the system, focusing on
discovering which parts of the API were understood and
which were not. We actively used this data to drive our
design: we would build part of the system, and then user test
to see where users consistently had difficulty. We would then
redesign those parts, build new ones, and user test again.

FINDINGS

The Death of XYZ
Perhaps Alice's most distinguishing API feature is that it
allows people to create behavior for three-dimensional
objects without using the traditional mathematical names for
the coordinate axes: X, Y and Z. Instead, Alice uses LOGO-
style [16], object-centric direction names: Forward/Back,
Left/Right, and Up/Down. We made this design decision after
using XYZ for two years where we routinely observed users,
even expert ones, saying things like:

'7 want to move the truck forward one unit,
and that's positive X to Alice, so I will type

move(X, 1)."

Our users already had a vocabulary for moving objects in
space, but our early system was not using it. WhBe it is true
that some objects do not have an intrinsic forward direction,
this is at least an improvement, because there are no objects
that have an intrinsic X direction.

This seemingly tiny, cosmetic change is probably Alice's
biggest contribution to making a usable API for 3D graphics.
By using direction names in lieu of XYZ, we relieved the
user of a cognitive mapping step that may occur thousands of
times while developing a 3D program. Removing XYZ also
reduced the need to talk about negative numbers to an
audience that naturally shies away from mathematics.

4 8 9

Papers CHI 2000 • I - 6 APRIL 2000

First Class Objects and Parts
Like many 3D graphics systems, Alice uses a tree-like
structure of nodes and children to organize the objects in a
3D scene.

Take, for example, the case of a vase sitting on a table. If we
wanted the vase to move when the table moved, we might
reasonably model the vase as a child of the table.

Legs Vase

But which are parts of the table, and which are independent
objects merely resting on the table? Said another way: how
would we ensure that

Table.setColor(Red)

turns the table red without also turning the vase red?
Intuitively, the vase is different than the table legs, but in an
undifferentiated PHIGS tree, all objects look alike.

Alice marks objects loaded from disk as "first class objects"
(the table and the vase) and marks the objects defined inside
thosefiles as parts (the legs of the table).

This allows some operations (e.g. SetTexture, SetColor,
Destroy) to tell the difference between an object's parts and
nodes that are attached for some other reason; the operation
stops at other first class objects. First-class objects thus act
like "firewalls" inside the object tree. Programmers can use

Legs Vase

the optional parameters ObjectOnly, ObjectAndParts,
ObjectAndChildren to override this behavior when they need
more control.

The first-class attribute of an object is also used to control
picking into the scene and other event-dispatching within
Alice. This is very much like the pick-bit that some PHIGS
systems have used in the past.

Objects Are Coordinate Systems (AsSeenBy)
Although 3D applications can perform all geometric
operations in a global coordinate system, most 3D
applications perform coordinate transformations to make
geometric operations easier to compute or reason [5]. The
Alice API already eases the burden of coordinate
transformation to some extent by making the move and turn
commands operate from the object's local coordinate system,
rather than from a global frame of reference. For more
general coordinate system transforms, we designed a system
[7] that allowed programmers to perform any geometric

operation within any other object's coordinate system. This
capability is invoked by adding the coordinate system object
with the optional AsSeenBy keyword parameter, as in:

bunny.move(forward, 1, AsSeenBy=chair)

Users can also use this mechanism to work in a global
coordinate system by using the Scene as the reference object.
Alice provides a default Scene object for every world.

Inspired by Alice, Disney Imagineering's Player system [15]
and Microsoft's Direct 3D graphics libraries have both added
this mechanism to their systems. Both are excellent examples
of improving a system for experts based on lessons learned
from a system for novices.

Beyond Translate, Rotate, and Scale
The Alice system provides commands that go beyond the
classic translation, rotation, and scale operations:

Place - this command allows one object to be placed
OnTopOf, InBackOf, ToRightOf etc, some other object:
cup.place(OnTopOf, Table). This command was developed
independently of and simultaneously with the similar but
somewhat more expressive Put system, developed at SGI [3].

PointAt and StandUp are underconstrained rotation
operations that use a global "up" direction to resolve the
ambiguous nature of the command. A.PointAt(B) will make A's
up vector parallel to the global up direction, while it rotates A
around its other two axes so that A's forward direction passes
through B. Fred.StandUPO will rotate Fred so that Fred's up
direction runs parallel to the global Up direction, minimizing
the rotation around the other two axes.

Nudge is similar to the Move command, but translates objects
by a percentage of their size, not by an absolute distance.
obj.nudge(forward, 0.5) will move an object forward a distance
equal to half its front-to-back length. This allows people to
create animations that are more portable across a wider range
of object sizes.

AlignWith makes one object point in the same direction as
another. This simple command is very handy and would be
fairly difficult for novice users to implement given just a turn
(rotate) command.

Pan rotates objects left or right around an axis that is parallel
to the global up vector. This allows a camera that is tilted
down toward the ground to remain pointed at the ground as it
turns in place.

Resize
One of our first user observation sessions gave rise to vocal
complaints about the strange side-effect that scale had on
distances. Calling

bunny.scale(3)

resulted in a bunny that was 3 times as large, but it also had
the effect that a subsequent call to

bunny.move(forward, 1)

490 ~k..~
~z'~=IZ ; := ' (/2)OO

CHI 2000 • 1-6 APRIL 2000 Papers

Moved the bunny forward 3 meters, not 1. Our users
correctly surmised that making the bunny larger also scaled
its local space.

This side effect comes from our implementation: Alice uses a
four dimensional homogeneous coordinate transformation
matrix to represent object position, rotation and scale, an
implementation that by design scales the space of objects [5].

To provide more useful semantics to this command, we use a
second 4x4 matrix to keep track o f scale. Alice's Resize
command now changes the scale of an object via this second
scale matrix without changing the object's position and
rotation matrix; this allows us to resize the object's geometry
without scaling its space. By propogating the effects of this
scale matrix to the object's children we can similarly resize
the geometry and offset relative to their parent of the object's
children without scaling their space. As a result, a meter in
Alice is always a meter regardless of whether or not an object
has been resized.

Resize also takes an optional parameter, UkeRubber

bob.resize(Front'roBack, 1/3, LikeRubber)

which scales an object in a way that preserves volume, an
important technique for many animation effects [8].

Vocabulary Issues
Novice users are strongly influenced by surface issues, and
seemingly inconsequential name choices can often make the
difference between a clear API and a confusing one. Some
notable examples:

Resize, not Scale: Scale is usually regarded as a noun, not a
verb, and has strong connotations of weight, not size.

Move, not Translate: Translation is understood by our
target audience to be the process by which French is
converted into German and has little to do with movement.

Speed, not Rate: Alice commands can specify how fast
something happens, as in bob.move(left, speed=l). Users were
observed to have a few problems with Rate in that it seemed
to have percentage or interest rate connotations, while Speed
never caused confusion.

FrontToBack, not Depth: Previous versions of Alice used
the words Depth, Width and Height to denote the dimensions
of an object. We found that these terms were sufficiently
ambiguous to users that we resorted to the clearer, but
somewhat more cumbersome FrontToBack, LeftToRight,
TopToBottom. While these terms are somewhat contrived,
they at least have the advantage of clarity and are formed out
of terms that a novice Alice user already knows.

AsSeenBy, not CoordSys: this name change was almost
aesthetic in nature, and allowed script-writers to read scripts
more naturally.

Color Names, not RGB Triples: Alice uses popular crayon
color names like Red, Green, Peach, and Periwinkle to
specify colors, not a numeric color model like RGB or HSV.

No individual name choice is pivotal to Alice's success, but
the aggregate effect of getting these names right is quite
powerful. Almost all Alice scripts use only the following
commands:

Geometric Manipulation: Move, MoveTo, Turn, TumTo, Nudge,
Place, Pan, PointAt, AlignWith, StandUp, SetPointOfView, SetSize,
SetScale, MoveToInPicturePlane, MoveInPicturePlane

Property and State Query: GetPosiUon, DistanceTo, GetAngles,
GetPointONiew, GetBoundingBox, IsHidden, IsCastingShadow,
BoundingBoxIsShowing, GetScale, GetTexture,
GetTransparentTextureColor

Shadows: CastShadow, StopCastingShadow

Textures: SetTexture, SetTransparentTextureColor

Coloring and Rendering: Get/SetColor, Get/SetVisibility,
GeUSetShininess, GeUSetl-lighlightColor, Get/SetEmissiveColor,
Get/SetShadingStyle, Get/SetLightingStyle, GetFillingStyle

Vertex Manipulation: GetVertexPosition, SetVertices,
GetVertices, GetFaces, GetVertexCount, GetFaceCount

Miscellaneous: Show, Hide, ShowBoundingBox, GetFilename,
Destroy, Store, AttachCamera, MakeTransparentTo[nput,
ShowFrustum

ROTATION RATE: ROTATIONS, NOT DEGREES
Alice's Turn command originally allowed programmers to
specify angular amounts in degrees and the animation time in
seconds, so it seemed natural that rotational speed be
specified in degrees-per-second. Informal observation
suggested that this unit was confusing.

After our test subjects had seen the first Alice tutorial and
were familiar with the Alice Turn command, we posed the
following question:

To turn objects in Alice, you specify a direction to turn (left,
for example) and an amount (90 degrees, for example).
Suppose you did not know an exact amount, but you wanted
to make the bunny turn around and around without
stopping? How would you want to describe the speed that
the bunny turns?

A breakdown of the answers appears below:

Turns/Second m 22
RPM m 9
unitless 1-10 • 7
FastJMedium/Slowm 6
Degrees/Second 1 3
Seconds/Turn 12
Radians/Second 11

TOTAL 50

Notice that turns-per-second is a clear favorite and that
degrees per second, the units we, the engineers had chosen,
came in fifth. In reaction to this, we now specify rotational

491

Papers CHI 2 0 0 0 * 1 - 6 APRIL 2 0 0 0

speed in turns-per-second, and angular amounts in turns. In
retrospect, it seems very natural to express a "quarter turn" by
typing b u n n y . t u r n (l e f t , 1/4).

Other Observations About Novices
Typing is Hard - Most of our users were non-typists and
appreciated any help we could give them (mouse control,
dialogs, etc.) that would keep them from having to use the
keyboard. We are currently working on addressing this issue
in Alice.

Problems in 3D Perception - A small percentage (~5%) of
our subjects were confused about the depth of objects on
screen, sometimes mistakenly seeing objects as approaching
or receding when in fact they were being resized. Shadows or
other depth cues might help reduce these problems.

High Expectations - Our subjects often expected collision
detection and gravity and were surprised when objects passed
through each other or hovered in mid-air.

The Importance of 0 and 1 - When faced with a new Alice
command that required a numeric parameter, we saw many
users try using a "1" to see what would happen for a wide
variety of data types (distance, color, time). Partly due to this,
we adopted a convention that all bounded scalar parameters
to Alice calls would range between 0.0 and 1.0. "Magic
ranges" like 0..255 and 0..32767 do not hold much appeal for
novices.

RELATED WORK

LOGO [16], Bolio [25], and the Alternate Reality Kit (ARK)
[19] and the animated Self programming environment [22]
were all strong influences in the Alice project.

Smalltalk [6] and HyperCard [13] both demonstrated that
programming-in-the-small was feasible by nonprogrammers.

The Simple User Interface Toolkit (SUIT) [14] used a two-
user protocol to test an API for novice GUI programmers.

BAGS (Brown Animation Generation System) [20], was one
of the first interactive 3D systems to use an interpreted
language to describe the static layout and dynamic behavior
o fa 3D scene.

Like Alice, Obliq 3D [11] uses an interpreted scripting
language for 3D graphics, but unlike Alice, is designed for
experts.

Superscape [21] and WorldUp [18] include advanced
geometric modeling capabilities and scripting languages.
WorldUp shares some ease-of-use goals with Alice, but has a
very different model for the distribution of scripts and the
timing of animations.

FUTURE WORK

Decomposing complex animations (e.g. walking) into Alice
animation primitives is still too hard. A richer set of
animation primitives might help.

Writing a serial sequence of code (A then B) requires too
much syntax, due to Alice's implicit threads.

We need to find ways of exposing the number and order of
parameters to a function to ease the burden of typing.

There are times when programming declaratively (e.g.
constraints) is more natural than expressing solutions
procedurally, and vice versa. Finding the correct mix of
programming styles, while folding in the advantages of some
of the other animation paradigms (e.g. keyframing) remains
an open problem.

SUMMARY OF LESSONS LEARNED

• Forward/Left/Up is an improvement over XYZ.

• Coordinate transformations can be made easier by
allowing other objects to act as the frame of reference
in which other operations happen.

• Function overloading and optional keyword parameters
in a programming language can be used to support the
controlled exposure of power, masking API complexity
until the user is motivated to use it.

• Matrices appear nowhere in the Alice API.

• APIs can and should be tested against real users from
one's target audience.

• Marking some objects as first class objects is a
powerful technique for segmenting one object from
another in the object tree.

• All commands should animate by default, including
Undo.

• Implicit threads make it possible for novices to control
surprisingly complex animations.

• Object resize and the scaling of space are both useful,
but should be presented to the user as two distinct
operations.

• Surface characteristics of programming languages
matter to novices, especially case sensitivity and careful
name choices.

• All bounded, scalar parameters should have a valid
range of 0.0 to 1.0.

CONCLUSION

Alice represents the culmination of many independent design
decisions based on hundreds of observations of novices.
These decisions combine to form a 3D graphics API that
allows 3D script writing with minimal distraction by
"unrelated" issues. As one researcher in the field kindly
noted, current tools inflict the "death of a thousand cuts"
compared Alice's "joy of a thousand tickles." Although
originally designed for undergraduates, we have observed
that many middle and high school students are capable of
using Alice to build interactive 3D graphics programs. Alice
is available for free from http://www.alice.org. We have
currently distributed over 50,000 copies of Alice.

492 ~k~ ~PIZ 2 0 0 0

CHI 2000 * 1 -6 APRIL 2000 P a p e r s

REFERENCES

1. Card, S. K. Robertson, G., and Mackinlay, J. The
Information Visualizer, an Information Workspace.
ACM SIGCHI 91 Conference Proceedings, 1991,
pp. 181-188.

2. Clarke, J. H. Hierarchical Geometric Models for
Visible Surface Algorithms. Communications of the
ACM, 19(10), October 1976, pp. 547-554.

3. Clay, S. R., and Wilhelms, J. Put: Language-Based
Interactive Manipulation of Objects. IEEE
Computer Graphics and Applications, March 1996.
Vol 16, Number 2, pp. 31-39.

4. FiRs, P. M., and Jones, R. E. Pychological Aspects
of Instrument Display: Analysis of 270 "Pilot Error"
Experiences in Reading and Interpreting Aircraft
Instrument. Memorandum Report TSEAA-694-12A,
Aero Medical Labaroatory, Air Materiel Command,
Wright Patterson Air Force Base, Dayton, Ohio,
October 1, 1947, pp. 47.

5. Foley, J. D., van Dam, A., Feiner, S. K., and
Hughes, J. F. Fundamentals of Interactive Computer
Graphic, Addison-Wesley Reading, MA 1990.

6. Goldberg, A., and Robson, D. Smalltalk80: The
Language, Addison-Wesley, Reading, MA, 1989.

7. Gossweiler, R., Long, C., Koga, S., and Pausch, R.
DIVER: A Distributed Virtual Environment
Research Platform. IEEE Symposium on Research
Frontiers in Virtual Reality, October 25-26, 1993,
San Jose, CA, pp. 10-15.

8. Lasseter, J. Principles of Traditional Animation
Applied to 3D Computer Animation. SIGGRAPH 87
Conference Proceedings, pp. 35-44.

9. Mackinlay, J. D., Card, S. K., and Robertson, G. G.
Rapid Controlled Movement Through a 3D Virtual
Workspace. ACM SIGGRAPH 1990, Conference
Proceedings, pp 171-179.

10. Martin, C., and Kent, J. Proposal for a VRML
Script Node Authoring Interface, VRMLScript
Reference, Silicon Graphics, Inc.October 6, 1996.

11. Najork, M. Obiq-3D Tutorial and Reference
Manual. DEC SRC Research Report #129,
December 1, 1994.

12. Nielsen, J. Usability Engineering, Academic Press,
Boston, 1993.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Nielsen, J., Frehr, I., and Nymand, H. O. The
learnability of HyperCard as an object-oriented
programming system. Behaviour & Information
Technology 10, 2 (March-April), 111-120.

Pausch, R., Conway, M., and DeLine, R. Lessons
Learned from SUIT, the Simple User Interface
Toolkit. ACM Transactions on Office Information
Systems October 1992, 10:4, pp. 320-344.

Pausch, R., Snoddy, J., Taylor, R., Watson, S., and
Haseltine, E. Disney's Aladdin: First Steps Toward
Storytelling in Virtual Reality. ACM SIGGRAPH 96
Conference Proceedings, August 1996.

Papert, S. MindStorms: Children, Computers, and
Powerful Ideas, Basic Books, New York, 1980.

Robertson, G. G., Card, S. K., and Mackinlay, J. D.
The Cognitive Coprocessor Architecture For
Interactive User Interfaces. ACM Symposium on
User Interface Software and Technology, 1989, pp.
10-18.

Sense8 Corporation: http://www.sense8.com.

Smith, R. B. The Alternate Reality Kit: An
Animated Environment for the Creation of
Interactive Simulations. Proceedings of the 1986
IEEE Computer Society Workshop on Visual
Languages, 1986, 99-106.

Strauss, P. BAGS: The Brown Animation
Generation System. Technical Report No. CS-88-22,
Brown University, May 1988.

Superscape: http ://www.superscape.eom.

Ungar, D., and Smith, R. SELF: The Power of
Simplicity. OOPSLA 87, Conference Proceedings,
published as SIGPLAN Notices, Volume 22,
Number 12, 1987, pp. 227-241.

van Dam, A., et. al. PHIGS+ Functional Description
Revision 3.0, Computer Graphics 22, 3, (July
1988), 124-218.

van Rossum, G., and de Boer, J. Interactively
Testing Remote Servers Using the Python
Programming Language. CWI Quarterly, Volume 4,
Issue 4 (December 1991), Amsterdam, pp 283-303.
For more information on Python, see
http://www.python.org.

Zeltzer, D., Pieper, S., and Sturman, D. J. An
Integrated Graphical Simulation Platform, Graphics
Interface 89 Conference Proceedings, pp. 266-274.

~k.~ 493

